

pLB-T ligation kit

(Cat. No.: S2GNM03h30001)

Description:

The pLB-T Fast Rapid Cloning Kit facilitates the efficient cloning of a broad spectrum of PCR products and DNA fragments featuring sticky ends. It demonstrates effectiveness in handling both phosphorylated and non-phosphorylated DNA fragments. Achieving over 95% positive recombinant clones takes just 5 minutes through the ligation of the positive selection vector and the insert.

This kit incorporates an innovative RapiLigation Mix, serving as a high-efficiency reagent for T4 DNA ligase reactions. This mix includes a linking enhancer and an enzyme stabilizer, significantly reducing linking time while enhancing the efficiency of linking and cloning PCR products

Kit Contents:

Contents	S2GNM03h30001
pLB-T Vector (50 ng/µl)	20 μl
RapiLigation Mix (2×)	100 μl
Control Insert DNA (688 bp, 50 ng/μl)	10 µl
ddH ₂ O	1 ml

Storage:

All reagents were stable at -30~-15°C for one year. Avoid repeated freezing and thawing of all reagents.

It is recommended that vector and ligation reagents can be appropriately divided into small packages, to prevent repeated freeze-thaw, to ensure quality.

Different fragment usage:

The molar ratio between the vector and the fragment is maintained within the range of 1:3 to 1:8. It is advised to determine this ratio by calculating based on the concentration identified through gel electrophoresis or ultraviolet spectrophotometry and considering the fragment length. The quantity of the insert can be approximated using the following formula:

The amount of the inserted fragment $ng = (3-10) \times \frac{\text{Insert segment length}}{\text{vector dosage ng}} \times \text{Vector length}$

The recommended amounts of PCR products for optimal ligation using 50 ng of vector in the

system are outlined below for different sizes:

PCR product length (bp)	Optimal usage (ng)					
700 bp	35 ng					
2000 bp	100 ng					

Reaction system:

The standard system was 10 μ l in volume, and a 5 μ l reaction system could also achieve good results. The dosage of reagents was halved.

Protocol:

Note: Please operate under sterile conditions for the following steps.

1. Add each ingredient to a sterile centrifuge tube as shown in the table below.

Component	volume				
Objective PCR fragment	X µl				
control Insert DNA		1 µl			
pLB-T Vector(50 ng/µl)	1 µl	1 µl			
RapiLigation Mix (2x)	5 µl	5 µl			
ddH ₂ O	to a final volume of 10 μl	to a final volume of 10 μl			

Gently flick the centrifuge tube to mix its contents, followed by a brief centrifugation for 3-5 seconds. Allow the mixed reaction solutions to undergo a reaction at 22°C for 5 minutes. Once the reaction is complete, place the centrifuge tube on ice for the subsequent conversion reaction.

Note: If the length of the inserted fragment is less than 1 kb, the reaction time may be 5-10 min. If the length of the inserted fragment is 1-2 kb, the reaction time may be 10-20 min. If the insert length is greater than 2 kb, the reaction time may be from 30 min to overnight.

- 3. Transformation
 - i. Prepare LB agarose plates with a final ampicillin concentration of 100 μ g/mL. Incubate the plates at 37°C, preheating them for a minimum of 20 minutes.
 - ii. Take 50-100 μ l of DH5 α competent cells (freshly retrieved from the -90°C to -65°C freezer and placed on ice). Add a portion of the ligation product when the cells have just thawed, ensuring that the added ligation product does not exceed one-tenth of the volume of the competent cells. Gently flick and mix the cells well, and then place them on ice for 30 minutes. Optionally, simultaneously transform the competent cells with

the supercoiled plasmid pUC19 as a control (adding 1 μ l of Compcell Control Plasmid pUC19 to another competent cell tube). Carry out the subsequent steps in parallel with the ligand transformation.

- iii. Place the centrifuge tube in a 42°C water bath for 90 seconds. After removal from the water bath, immediately transfer the tube to an ice bath for 2-3 minutes without agitating the centrifuge tube.
- iv. Add 350 µl of SOC or LB medium (free of antibiotics) preheated to 37°C to the centrifuge tube. Incubate the tube with shaking at 180 rpm and 37°C for 45-60 minutes. This step aims to express the resistance marker gene on the plasmid and revive the bacterial cells.
- Mix the bacterial liquid in the centrifuge tube evenly. Take 200 μl and spread it onto LB solid agar medium containing ampicillin. Gently coat the cells evenly using sterile elbow glass rods or glass beads. Once the plate surface is dry, invert it and culture at 37°C for 12-16 hours.
- 4. Testing
 - i. Routine test: The obtained colonies were inoculated with 1–5 mL LB (containing ampicillin at a final concentration of 50–100 g/mL) medium, shaken and cultured at 37°C overnight, the strains were stored, and the plasmids were extracted. PCR or enzyme digestion was used to identify whether the inserted fragments were correct.
 - ii. Rapid detection: The selected colonies were directly subjected to PCR detection
 - iii. Sequencing identification: The initial identification is followed by sequencing using conventional or rapid methods.

PLB-T Vector sequencing primers:

pLB Forward Sequencing Primer(23-mer): 5'-CGACTCACTATAGGGAGAGCGGC-3' pLB Reverse Sequencing Primer(24-mer): 5'-AAGAACATCGATTTTCCATGGCAG-3'

pLB-T Vector map

				ä	forwa	ard seq	uencing	prime	er, 23-m	ner								
						T7 tra	nenrintie	n etart		E	co521							
		T7 p	romote	r			nacripus	-			Noti		E	gIII		Крп	21	
5'	GGC	GTA	ATA	CGA	CTC	ACT	ATA	GGG	AGA	GCG	GCC	GCC	AGA	TCT	T TC	C	GGA	TG
3'	CCG	CAT	TAT	GCT	GAG	TGA	TAT	ccc	TCT	CGC	CGG	CGG	TCT	AGA	AAG	GG	CCT	AC
	Ala	Tyr	Tyr	Ser	Glu	Ser	Tyr	Pro	Ser	Arg	Gly	Gly	Ser	Arg	G	ily	Ser	Pro
	E	co881 Khol																
	P	spXI											-	Xbal			Bgill	
G	CTC	GA	G	TTT	TTC	AG	CA	AG Z	TT	000	A	TCT	TTC	TAC	G AF	4G	ATC	TCC
С	GAG	CI	CI	AA	AAG	TCO	G TI	C 1	A	ron pro	TT	AGA	AAG	ATC	C TI	C	TAG	AGG
	Glu	Le	u I	Lys	Glu	Ala	Le	u				Arg	Glu	Leu	Le	u	Asp	Gly
								Б	Btgl co130	Č.		David						
	-				0.000	30	~ ~		NCOI	003		BSUID	3.00					
	TAC	AA	AT A	4T.T.	CTC	AG	T	SC 0	CAT	GGA	AAA	TCG	ATG	TTC	TTC	Т 3	s'	
	ATG	TI	A	AA	GAG	TC	G AC	CG	GTA	CCT	TTT	AGC	TAC	AAG	AAG	A 5	5'	
	Val	1	e	Asn	Glu	Ala	A	a	Met	Ser	Phe	Arg	His	Glu	Glu			
											revers	se seque	ncing pri	mer, 24-	mer			

 \bigcirc Revision History \bigcirc

Description	Version	Date
Initial Release	S2GNM03h30001_Protocol_V1	Dec 2023